An Advanced Visual Analytic Decision Support Tool for Electricity Infrastructure Operations

Yousu Chen
Wong Pak
Craig Allwardt
Frank L. Greitzer

Z. Henry Huang
Patrick Mackey
Jian Ma

Pacific Northwest National Laboratory

March 16th, 2010
Presentation Outline

- Background on Electricity Infrastructure Operation
- Need for Advanced Decision Support Tool
- Features of the Advanced Visual Analytic Decision Support Tool
- Conclusion and Future Work
Background – Complexity of Electricity Infrastructure Operations

- Human Errors
- Ice & Lightening Storms
- Dig-Ins
- Vehicular Collisions
- Physical Attacks
- Cyber Attacks
Consequences of Poor Situational Awareness

August 1996
30,000 MW
8M customers
~24M people

August 2003
62,000 MW
~16M customers
50M people

The need to improve situational awareness became clear.
The need to improve situational awareness and decision-making became clear.

- Contributing factors identified:
 - Human error
 - Poor display design
 - Lack of operator situation awareness

- Wide Area Situation Awareness (SA) is recognized as a critical requirement

- Improved interfaces and decision support is one of the five fundamental technologies that will drive the Smart Grid
Background – Inadequacy in Network Operations

▸ Today’s Network Operation Tools
 ▪ Mainly experience-based
 ▪ Raw/Tabular presentation dominates
 ▪ Data volume and complexity can overwhelm operators
 ▪ Inadequate support for real-time situational awareness and decision making

▸ There is a technical gap between data and actionable information
What Kind of Decision Support Tool We Need?

A tool can help operators on solving following questions:

- What is the current system status?
 - Detect problems
- Is the network becoming compromised?
 - Recognize developing problems
- What would the problem cause to the network?
 - Predict consequences of failures
- How effective would our response be to the problem?
 - Evaluate potential operator actions

“Enabling predictive Electricity Infrastructure operations”
Overall Technical Approach

1. Improve situational awareness by turning large amount of data into a geographical domain in a color scheme
 • Signature/risk analysis

2. Identify system trends by performing trending analysis
 • Statistical trending analysis

3. Predict consequences of problems by analyzing the pattern of the impact
 • Statistical analysis and pattern recognition

4. Assess effect of alternative actions via interactive risk analysis
 • Interactive evaluation of candidate control actions
 • Rank and provide guidance

Operator
1. Visual Analytics for Risk Assessment (1)

- **Risk Index Definition**
 - Bus risk index:
 \[R_{ik} \% = \frac{(V_{ik} - V_{i_{min}}) - (V_{i_{max}} - V_{i_{min}})/2}{(V_{i_{max}} - V_{i_{min}})/2} \times 100\% \]
 - Transmission Line Risk index:
 \[R_{ik} \% = \frac{P_{ik}}{P_{i_{max}}} \times 100\% \]

- **Multi-Layer Risk Index**
 - Superimpose risk indices for multiple possible configurations
 \[R\% = \max(R\%_i) \]
1. Visual Analytics for Risk Assessment (2)

Visual Representation of Risk Indices

- Gaussian color mapping with green/gray/red scale

\[R_{ik} \% \in \begin{cases} [0, R_T \%), & \text{safe} \\ [R_T \%, 100\%), & \text{alert} \\ [100\%, \infty), & \text{violation} \end{cases} \]
1. Visual Analytics for Risk Assessment (3)

- Time Series Analysis
 - Scenario: western power grid with increasing stress and lost element

![Graph showing stress level over time with a lost large nuclear power plant at 8:00]
2. Visual Trending Analysis (1)

Case Studies – western US power grid

System trending

Lost a large nuclear power plant
2. Visual Trending Analysis (2)

- Automatic Recognition of Merging and Separation of Security Regions
3. Clustering Analysis (1)

- Identify relationship between configurations and affected assets
- Enable operators to focus on important information

[Diagram showing affected assets and configurations]
3. Clustering Analysis (2)

- Easy to recognize system patterns
4. Interactive Assessment of Remedial Actions (1)

- Provide further decision support for power grid operators
- Test candidate options in model simulation, visualize the new situation of the grid on the color-contoured map
- A collective severity level (CSL) is used to quantify the effect of the actions
 - Derived based on performance index:
 \[PI = \sum_{i=1}^{N} \left(\frac{P_i}{P_{i_{\text{max}}}} \right)^2 \]
 - \[CSL = \sum_{i=1}^{N} \left(\frac{\max(P_{i_k})}{P_{i_{\text{max}}}} \right)^2 \]
 - \(i \): denotes the \(i^{\text{th}} \) transmission line
 - \(k \): denotes the \(k^{\text{th}} \) contingency case containing violations
 - \(P_{i_{\text{max}}} \): the capacity of the \(k^{\text{th}} \) transmission line
 - \(P_{i_k} \): the real power carried on the \(i^{\text{th}} \) transmission line for the \(k^{\text{th}} \) contingency case
4. Interactive Assessment of Remedial Actions (2)

Provide guidance for preventing and mitigating failures

All Action Options (Sorted From Best To Worst)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>CSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Reduce 8.4% loads off</td>
<td>0.000</td>
</tr>
<tr>
<td>B</td>
<td>Reduce 7.7% loads off</td>
<td>53.304</td>
</tr>
<tr>
<td>C</td>
<td>Reduce 4.9% loads off</td>
<td>74.028</td>
</tr>
<tr>
<td>D</td>
<td>Reduce 3.0% loads off</td>
<td>90.281</td>
</tr>
<tr>
<td>E</td>
<td>Reduce 1.0% loads off</td>
<td>117.231</td>
</tr>
</tbody>
</table>

Proudly Operated by Battelle Since 1965
5. Evaluation in Last August

- The prototype of this tool has been evaluated by NERC-certified control room operators in the Electricity Infrastructure Operation Center (EIOC) visualization experiment in PNNL.

- Operators wish to have this tool in their control centers.
Conclusion

- Today’s operation tools only provide inadequate support for real-time situational awareness and decision making.
- The advanced visualize analytics decision support tool can play a key role in Electricity Infrastructure operations.
- Generic framework, can be applied to other power system applications and other complex network operations.
Future Work

- Conduct a series of usability studies to validate the usefulness of the tool in real life
- Integrate the tool with current commercial power operation tools in control center to adapt the tool to operators’ environment.
- The tool is being evaluated in collaboration with the Western Electricity Coordinating Council, the organization overseeing the West American power grid.
Questions?